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  Based on the qualitative theory of atmospheric 
dynamical equations, a new method for simplifying equa-
tions, the operator constraint principle, is presented. The 
general rule of the method and its mathematical strictness 
are discussed. Moreover, the way that how to use the method 
to simplify equations rationally and how to get the simplified 
equations with harmonious and consistent dynamics is given. 
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 The atmospheric dynamical equations are very 
complicated nonlinear, non-stationary and compressible 
partial differential equations with dissipation and external 
forcing[1—4]. They describe the various spatial-temporal 
motions in the atmosphere. At present, many difficulties 
cannot be overcome to solve the equations analytically 
under the proper initial-boundary value conditions. How-
ever, the special spatial-temporal motion in the atmos-
phere has its own way, so some factors could be neglected 
when we simplify equations for particular atmospheric 
motion. This is not only easy for us to make mathematical 
analysis, but we can also lay stress on the essential of mo-
tion and grasp the heart of problem. 
 The scale analysis developed since the 1940s has 
been a main and broadly adoptive method with semi- 
experimental property for simplifying equations[1—7]. The 
method assumes that each term in the same equation does 
not possess equal importance, thereby equations may be 
simplified according to the rule that the minor terms are 
left out by comparing the order of magnitude of every 
term in the same equation. An apparent deficiency of the 
scale analysis is that the method only compares the order 
of magnitude of each term in the same equation and dis-
regards the links between equations in the original equa-
tions. Consequently, we probably get a set of inconsistent 
simplified equations without consistent properties in the 
original equations. Applying the method to simplifying 
equations, sometimes we can find that the same term is 
regarded as a secondary term and omitted in a certain 
                        

equation, but it is retained in another one. It is difficult to 
explain this result in physical sense, therefore, results ob-
tained by the semi-experimental theoretical analysis 
method are usually coarse and loose[3—7]. In order to hold 
the original properties of the system, other constraint 
methods need to be used. The energy constraint[8] is sim-
ply an effective method with clear physical sense. The 
method, however, is only available for the adiabatic sys-
tem without friction. 
 To make up for the lack of the scale analysis and get 
consistently simplified dynamical equations, an operator 
constraint method is proposed in this study. This method 
is an extension of the energy constraint. The method is 
based on the fact that the atmospheric system is an essen-
tially dissipative structure and is constructed on the quali-
tative theory of atmospheric dynamical equations[9 19]1), 
and abides by the rule that the properties of corresponding 
operators in the original and simplified equations should 
be kept unchanged, thereby the simplified equations ob-
tained will not distort the essential properties of original 
equations.  

1  General principle of the operator constraint 
method 
 The full atmospheric dynamical equations can be 
rewritten as an equivalent operator equation in Hilbert 
space[17, 18] 1): 
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w are zonal, meridional and vertical winds respectively, 
ρ and T denote density of air and air temperature respec-
tively, Cv represents specific heat (for the concrete form of 
the operators N(ϕ) and L(ϕ) see refs. [17, 18] and footnote 
1)). The operator N(ϕ) represents the nonlinear advection, 
Coriolis force, pressure-gradient force, gravity, spherical 
curvature, etc. L(ϕ) embodies the effects of dissipative 
terms. From the most universal sense, the abstract opera-
tor N(ϕ) is an anti-adjoint and antisymmetrical operator
the L(ϕ) is a self-adjoint and symmetrical operator, 
namely 
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 1) Li Jianping, Qualitative theory of the dynamical equations of atmospheric and oceanic motion and its applications, Ph. D. Dissertation (in 
Chinese), Lanzhou University, 1997, 209. 
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The physical senses implied by the properties of N(ϕ) and 
L(ϕ) as mentioned above are that N(ϕ) represents the 
various kinds of reversible processes of energy conserva-
tion and L(ϕ) shows the irreversible processes of energy 
dissipation. For a simplified equation, its corresponding 
operators should hold the properties of N(ϕ) and L(ϕ) so 
that the essential physical properties of the original equa-
tions will not be broken down. This is simply the operator 
constraint principle for simplifying equations. Let the 
simplified equation be 
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According to the rule mentioned above, the simplified 

operator )(
~ ϕN  should be an anti-adjoint operator and 

)(
~ ϕL  should be self-adjoint. We can prove that there is 

the same asymptotic behavior in eqs. (1) and (2). This 
shows that there is no false source or sink and there is still 
a global attractor in the simplified equation obtained by 
the principle. The simplified equation is still a “dissipative 
structure”, which does not destroy the asymptotic behav-
ior of the solution of original equations and holds the 
whole properties and physical laws of original equations. 
Hence, the simplified equations obtained by the operator 
constraint principle are still very strict and their dynamical 
relations are harmonious and consistent. For example, the 
large-scale atmospheric equations can be written as fol-
lows[9—11, 18]: 
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The operators )(ϕlN  and 
lL  in eq. (3) do not lose the 

properties of )(ϕN and L(ϕ)[9—11, 18], so there is the same 

long-time behavior between eqs. (3) and (1) and the sim-
plification is reasonable.  

2  Simplification of the operator N 

 According to the discussions stated above, )(ϕN  is 

an anti-symmetric operator, so is the simplified operator 

)(
~ ϕN . 

 

                              
 1) See the footnote on page 1053. 

 Let nij be a term in )(ϕN  and nji the anti-symmetric 

term of nij. To the problem considered and properties of 
the objective studied, if nij is regarded as minor and can be 
neglected, nji should also be omitted in order to hold the 
anti-symmetric property of )(ϕN . Otherwise, there must 

be false “sources” or “sinks”, thereby elementary proper-
ties of the original system are lost. Considering the system 
without dissipations and forcings, i.e. the adiabatic non- 
friction system, eq. (1) becomes 
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Making H0 inner production with ϕ, the energy conserva-
tion follows immediately, namely 
 0)( ϕϕ =t . (5) 

For any simplified equation of (4), 
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if )~(
~ ϕN  still holds the anti-adjoint properties of ),(ϕN  

it results immediately by making H0 inner production with 
ϕ that there is also the energy conservation in the simpli-
fied equation (6), i.e. 
 

0
~)(~ ϕϕ =t . (7) 

This indicates that eq. (6) does not break down the energy 

conservation in the original equation. If N
~  does not 

possess the anti-adjoint property of N, it can be proved 
that the simplification destroys the energy conservation 
property of eq. (4). There are many examples such as the 
barotropic non-divergent model, the linear barotropic 
model, the shallow water model, and the p-coordinate 
primitive equation model, which satisfy the principle as 
indicated earlier. Additionally, two improper examples 
from the scale analysis are also given because they do not 
have the above properties.  

 It can be concluded from the above analysis that the 
energy constraint method is a special case of the operator 
constraint method and in the process of simplification the 
operator constraint method is more concise and much 
clearer than the energy method. 

3  Simplification of the operator L 

 The operator L(ϕ) is an asymmetric and positive 

operator, so is the simplified operator )(
~ ϕL . 

 Let lij be a certain term in L(ϕ) and lji the asymmetric 
term of lij. If lij is left out, lji must be omitted. Otherwise, 
the asymmetric and non-negative property of L(ϕ) will be 
lost, thereby physical properties of the original system are 
distorted. In the following two simplifications used are 
discussed. The boundary conditions may be either with or 
without topography[17, 18]1).  



������

Chinese Science Bulletin  Vol. 46  No. 12  June  2001 1055 

 Because the turbulent viscosity force is much greater 
than the molecule viscosity force, the molecule viscosity 
in the motion equations is usually neglected while dissipa-
tion is taken account of. After the molecule viscosity is 
omitted, the operator )(ϕL  can be rewritten as follows: 
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respectively; kλ, kθ and kr represent turbulent viscosity 
coefficients in horizontal and vertical directions respec-
tively; Kλ, Kθ, Kr are turbulent conductivity in horizontal 
and vertical directions, respectively. It is easy to prove 

that there are the same properties between )(
~ ϕL  and 

L(ϕ). Therefore, the simplification is appropriate.  
 After the molecule viscosity is left out, it is common 
to think that the turbulent viscosity in horizontal direction 
is much less than that in vertical direction. As a result, the 
turbulent viscosity in horizontal direction is also omitted. 
Is this simplification true? The analysis shows that after 
neglecting the turbulent viscosity in horizontal direction, 
L(ϕ) becomes 
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where 

 
*2*

11~

ρ∂
∂

∂
∂

ρ r
k

rr
l r= , (10)

 2
*2*5

~
2

11~
TTC

r
K

rr
l ssKr α

ρ∂
∂

∂
∂

ρ
−= .  (11) 

It may be proved that 
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that is to say, )(
~ ϕL  is asymmetric. Then, we need to 

prove whether 
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The answer is positive. However, to prove formula (14) 

we need to introduce a new Hilbert )(
~

1 ΩH , which is a 

complete space with the following norm 
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where | |1 takes the norm in the Hilbert space )(ΩV . 

)(ΩV  is a complete space with the following norm 
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Using the new space, we can prove formula (14). This 
indicates that simplification can only alter the state space 
but not the properties of operators, and consequently, it is 
clear that the simplified equation does not distort the 
evolution law of the original equation in the qualitative 
sense.  

4  Summary 

 In the theoretical study of atmospheric dynamics the 
primitive equations often need to be simplified. Simplifi-
cation changes state space, but properties of simplified 
operators should hold those of original operators. The rule 
can assure that simplification does not distort elementary 
physical laws and global properties of the original system. 
This is just the operator constraint principle presented by 
this note for simplifying atmospheric dynamics equations. 
According to our discussions, this method has a strict 
mathematical basis and definite physical sense. Simplified 
equations with harmonious and consistent dynamics can 
be obtained by applying the combined method of the scale 
analysis and the operator constraint principle. It should be 
noticed that, however, if we study the phenomenon related 
to long-term process of the atmosphere, according to the 
operator principle the simplified system should still be a 
forced dissipative nonlinear system, which should neither 
be an adiabatic system without friction nor a linear sys-
tem[11—19]. Only in this way do the simplified equations 
not distort the long-time behavior of the original system 
and also can better results be obtained. 
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